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 a b s t r a c t

Explainable AI (XAI) has emerged as a powerful tool for improving the performance of AI models, going beyond 
providing model transparency and interpretability. The scarcity of labeled data remains a fundamental chal-
lenge in developing robust and generalizable AI models, particularly for low-resource languages. Conventional 
data augmentation techniques introduce noise, cause semantic drift, disrupt contextual coherence, lack control, 
and lead to overfitting. To address these challenges, we propose XAI-Guided Context-Aware Data Augmentation. 
This novel framework leverages XAI techniques to modify less critical features while selectively preserving most 
task-relevant features. Our approach integrates an iterative feedback loop, which refines augmented data over 
multiple augmentation cycles based on explainability-driven insights and the model performance gain. Our exper-
imental results demonstrate that XAI-SR-BT and XAI-PR-BT improve the accuracy of models on hate speech and 
sentiment analysis tasks by 6.6% and 8.1%, respectively, compared to the baseline, using the Amharic dataset 
with the XLM-R model. XAI-SR-BT and XAI-PR-BT outperform existing augmentation techniques by 4.8% and 
5%, respectively, on the same dataset and model. Overall, XAI-SR-BT and XAI-PR-BT consistently outperform 
both baseline and conventional augmentation techniques across all tasks and models. This study provides a more 
controlled, interpretable, and context-aware solution to data augmentation, addressing critical limitations of ex-
isting augmentation techniques and offering a new paradigm shift for leveraging XAI techniques to enhance AI 
model training.

1.  Introduction

The rapid advancement of large language models (LLMs), such as 
GPT (Radford et al., 2018) and BERT (Devlin et al., 2018), has trans-
formed various domains, including safety-critical applications. Despite 
their impressive capabilities, these models operate as black boxes, rais-
ing concerns about transparency, trustworthiness, and interpretability. 
Explainable Artificial Intelligence (XAI) has emerged as a key solution to 
these concerns, offering insights into the decision-making processes of 
AI models. While XAI techniques have been successfully applied to vari-
ous natural language processing (NLP) tasks, their full potential remains 
underexplored, particularly in the context of data augmentation (Bayer 
et al., 2023; Kwon & Lee, 2023). A major challenge in training robust AI 
models is the scarcity of annotated data, particularly for low-resource 
languages (Tonja et al., 2023). While high-resource languages such as 
English benefit from extensive, high-quality datasets, these advantages 
do not transfer easily to other linguistic groups. Consequently, AI models 
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often underperform in low-resource settings, exacerbating disparities in 
performance and limiting the global applicability of AI-driven solutions.

Data augmentation has been widely adopted to address data scarcity, 
improving model performance by artificially generating additional 
training data. Traditional augmentation techniques include synonym re-
placement, random insertion, random swap, and random deletion (Wei 
& Zou , 2019), which manipulate words or phrases to introduce varia-
tion. Back translation (Corbeil & Ghadivel, 2020; Sennrich, 2015) trans-
lates text into a high-resource language and back into the original lan-
guage to generate paraphrased versions. Other approaches, such as data 
noising (Nishi et al., 2021), and sentence shuffling (Takahagi & Shinnou, 
2023), introduce controlled perturbations to enhance generalization. 
More recently, LLMs have been employed to generate synthetic data 
through fine-tuning or prompting (Dai et al., 2025; Schick & Schütze, 
2021). However, these methods face significant challenges in preserv-
ing linguistic and contextual integrity. LLM-based augmentation, while 
powerful, is prone to hallucinations—generating factually incorrect or 
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contextually irrelevant content—and struggles to maintain fidelity in 
low-resource languages due to underrepresentation in pre-training data 
(Mersha et al., 2024c; Wang et al., 2024). Conventional augmentation 
techniques, on the other hand, often introduce noise, disrupt seman-
tic coherence, and lack adaptability, ultimately leading to overfitting or 
semantic drift. These challenges underscore the need for a more struc-
tured, explainability-driven approach to data augmentation.

To address these limitations, we introduce XAI-Guided Context-
Aware Data Augmentation, a novel framework that leverages explain-
ability techniques to guide the augmentation process. By identifying and 
preserving critical task-relevant features while modifying non-essential 
ones, our approach ensures semantic integrity and contextual coher-
ence. Unlike conventional methods that apply augmentations indiscrim-
inately, our method incorporates an iterative feedback loop that refines 
the augmented data based on both explainability insights and model 
performance gains. This structured augmentation process reduces noise, 
mitigates biases, and enhances the quality of synthetic data.

Furthermore, our technique facilitates cross-lingual transfer learning 
by ensuring semantic consistency across languages, making it particu-
larly effective for low-resource NLP tasks. By maintaining the fidelity 
of linguistic structures, our method enables models trained on aug-
mented data to generalize more effectively across multiple languages. 
Experimental evaluations demonstrate that our XAI-guided augmenta-
tion significantly improves model performance, outperforming conven-
tional techniques while enhancing interpretability before and after aug-
mentation. The key contributions of this study are as follows:

• We propose a novel XAI-guided context-aware data augmen-
tation technique, pioneering the use of explainability to enable 
informed and context-driven augmentation strategies across lan-
guages.

• We introduce an iterative refinement mechanism that continu-
ously improves augmentation quality through post-augmentation 
analysis.

• We mitigate noise, semantic drift, and overfitting by preserving crit-
ical features while modifying non-essential ones, ensuring model 
robustness and reducing biases.

• We enhance cross-lingual transfer learning by maintaining seman-
tic fidelity across low-resource languages, improving generalization 
in multilingual AI applications.

The remainder of this paper is structured as follows: Section 2 re-
views the related work on data augmentation and XAI techniques. Sec-
tion 3 describes the methodology and experimental setup, covering 
datasets, models, and the selection of XAI techniques. Section 4 presents 
the results, along with an evaluation of the proposed approach and a 
comparison with existing augmentation methods. Section 5 outlines the 
limitations of the study and future research directions. Finally, Section 6 
concludes the paper.

2.  Related work

We reviewed relevant studies on explainability techniques and exist-
ing data augmentation approaches. The explainability techniques sub-
section focuses on methods that provide insights into model predictions, 
which are crucial for developing XAI-guided context-aware data aug-
mentation. The data augmentation approaches subsection provides an 
overview of existing augmentation methods, serving as a foundation for 
understanding how explainability can be leveraged to generate more 
effective augmented data.

2.1.  Explainability techniques

XAI techniques address the black-box nature of AI models by re-
vealing the internal workings and decision-making processes, provid-
ing insights into why and how models make predictions (Mersha et al., 

2024a,b). Feature-based XAI methods highlight key features influenc-
ing the model decisions, enhancing the interpretability of model out-
puts. Numerous approaches have been developed to generate explana-
tions that indicate the relevance of each token in a model’s prediction. 
For clarity and ease of understanding, we grouped these methods into 
four main categories: Perturbation, Activation, Gradient, and Attention 
(Fantozzi & Naldi, 2024; Mersha et al., 2025). Below, we would like to 
discuss a selection of prior works in this area briefly.

Perturbation-based. XAI methods alter input features and observe the 
impact on the model’s output to assess their importance. These methods 
are model-agnostic and directly interpretable. SHAP (SHapley Additive 
exPlanations) uses game theory to attribute contributions of individ-
ual features to the output (Lundberg, 2017). LIME (Local Interpretable 
Model-Agnostic Explanations) perturbs input features and trains a sur-
rogate linear model to approximate the original model locally around 
the input (Ribeiro et al., 2016). Occlusion Sensitivity masks parts of 
the input and observes the changes in output to identify critical regions 
(Zeiler, 2014).

Activation-based. XAI approaches leverage neural activations to trace 
the contribution of each input feature to the model predictions by an-
alyzing neuron activations across the network. Class Activation Map-
ping (CAM) identifies input features that contribute most to model pre-
dictions by combining neuron activations with their associated weights 
(Zhou et al., 2016). Layer-wise Relevance Propagation (LRP) assigns rel-
evance scores to input features by propagating the prediction score back-
ward through the model (Bach et al., 2015). Concept Activation Vectors 
(CAVs) quantify the presence of human-interpretable concepts in the ac-
tivations of neural network layers, enabling targeted explanations (Kim 
et al., 2018)

Gradient-based. XAI approaches leverage the gradients of a model’s out-
put with respect to its input to assess the contribution of input features to 
the model’s decision-making process. Among these, Integrated Gradients 
(IG) computes the average gradient along a linear path from a baseline 
input to the actual input (Sundararajan et al., 2017). Gradient×Input 
enhances interpretability by multiplying the gradient of the output with 
respect to the input by the input values themselves, providing a direct 
measure of feature importance in the context of the model’s predictions 
(Shrikumar et al., 2017). FullGrad extends traditional gradient meth-
ods by incorporating the gradient contributions of bias terms alongside 
input features, thereby offering a more comprehensive and detailed ex-
planation (Srinivas & Fleuret, 2019). Building upon IG, Guided IG intro-
duces layer-specific guided propagation, which enhances explanation 
clarity by refining gradient-based insights for deep networks (Kapish-
nikov et al., 2021).

Attention-based. XAI methods leverage the attention mechanisms within 
models to generate explanations, highlighting the parts of the input most 
relevant to the model’s prediction. These methods are particularly well-
suited for transformer architectures. Attention Flow and Attention Roll-
out leverage the attention mechanism in transformer models to explain 
their decisions. Attention Flow propagates attention scores through the 
layers to quantify the importance of tokens, while Attention Rollout ac-
cumulates attention weights across layers to trace the influence of input 
tokens on the output, providing a global explanation of the model’s deci-
sion (Abnar & Zuidema, 2020). Attention mechanism visualization helps 
interpret how attention layers focus on input tokens (Vig, 2019).

Several hybrid approaches have been proposed by combining 
different techniques and leveraging their complementary strengths. 
These include Gradient+Activation (Selvaraju et al., 2020), Activa-
tion+Perturbation (Shrikumar et al., 2017), Activation+Attention 
(Chefer et al., 2021), Attention+Gradient (Qiang et al., 2022), 
Gradient+Perturbation (Sundararajan et al., 2017), and Atten-
tion+Gradient+Perturbation (Yuan et al., 2021). By integrating these 
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methods, researchers aim to address the limitations of individual tech-
niques.

2.2.  Data augmentation approaches

Text data augmentation is a crucial technique in natural language 
processing (NLP) that enhances model performance by artificially ex-
panding training datasets (Khan & Venugopal, 2024). By generating di-
verse variations of text data, augmentation improves generalization, ro-
bustness, and efficiency, particularly in low-resource scenarios (Shorten 
et al., 2021). The augmentation techniques create diverse training sam-
ples through strategic transformations. As a result, they strengthen 
model robustness and effectiveness in real-world applications.

Several text augmentation techniques exist, each offering unique 
benefits. In this work, we present the most common and widely used 
augmentation approaches.

Synonym replacement. This method replaces words in a sentence with 
their synonyms to generate new variations (Bayer et al., 2022). Wei 
and Zou  (2019) introduce the Easy Data Augmentation (EDA) tech-
nique, a straightforward method that uses random synonym replace-
ment, random insertion, random swap, and random deletion. EDA en-
hances model performance, particularly on small datasets, by reducing 
overfitting and improving generalization. This approach has demon-
strated significant accuracy improvements for CNN and RNN models.

Back translation. Back translation is a widely used data augmentation 
technique in NLP that translates text into another language and then 
back into the original language (Hayashi et al., 2018; Taheri et al., 
2024). This process generates paraphrased text. Sennrich (2015) en-
hance neural machine translation by generating synthetic parallel data 
from monolingual corpora. It translates target-language text into the 
source language and then back to the target, improving model perfor-
mance, especially in low-resource settings (Sennrich, 2015). Corbeil and 
Ghadivel (2020) introduce a simple back-translation technique for gen-
erating diverse paraphrased data to improve transformer-based models. 
The approach enhances paraphrase identification by leveraging back-
translation to create augmented training data, which helps improve 
model generalization, particularly in low-resource scenarios (Corbeil & 
Ghadivel, 2020; Latief et al., 2024).

Contextual word embedding-based augmentation. This approach utilizes 
pre-trained language models, such as BERT, GPT, and T5 (Shakil et al., 
2024), to generate augmented text by replacing words based on con-
textual embeddings. By considering the surrounding words, it ensures 
that the augmented text remains grammatically and semantically co-
herent (Kapusta et al., 2024). Kobayashi  (2018) introduces Contextual 
Augmentation, a data augmentation technique that enhances text diver-
sity by replacing words with contextually appropriate alternatives using 
language models. This method leverages paradigmatic word relations 
to generate meaningful variations. Contextual Augmentation improves 
model robustness and generalization by preserving sentence coherence, 
particularly in text classification tasks (Kobayashi , 2018). Kumar et al. 
(2020) explored pre-trained transformer models for data augmentation 
in low-resource NLP tasks, comparing BERT, GPT-2, and BART. Their ap-
proach prepends class labels to input text, enabling label-aware augmen-
tation. BERT replaces masked tokens while preserving meaning, GPT-2 
generates fluent text but struggles with label retention, and BART ap-
plies denoising autoencoding (word masking), achieving the best bal-
ance between semantic fidelity and data diversity (Kumar et al., 2020).

Adversarial example generation. This approach involves generating and 
incorporating adversarially perturbed text samples. Volpi et al. (2018) 
propose an adversarial data augmentation approach to improve model 
generalization to unseen domains without access to target domain data. 

Their method iteratively augments training data by generating adver-
sarial examples from fictitious “hard” target distributions, formulated 
using a worst-case optimization over distributions near the source do-
main in the feature space (Volpi et al., 2018). Alzantot et al. (2018) 
propose a genetic algorithm-based approach for generating adversarial 
examples in NLP by strategically modifying input text while preserving 
its semantic meaning. Their method involves synonym-based word sub-
stitutions guided by word embeddings, ensuring that alterations remain 
fluent and natural (Alzantot et al., 2018).

Sentence shuffling. This approach randomly changing the order of sen-
tences within a document while maintaining coherence (Iyyer et al., 
2015). Takahagi and Shinnou (2023) rearranges phrases in Japanese 
sentences while maintaining dependency relationships to enhance tex-
tual entailment tasks. This method was applied to the JSICK dataset 
using BERT (Devlin et al., 2018) and RoBERTa (Liu, 2019) models, im-
proving performance, particularly in detecting contradictions.

Existing data augmentation techniques face several key challenges. 
Random synonym replacement, random insertion, swapping, and dele-
tion often distort context and introduce noise, negatively impacting the 
model’s ability to understand semantic coherence (Ding et al., 2024; 
Nair et al., 2024). Back-translation can be expensive and yield incorrect 
outputs, and mixups tend to create unrealistic or implausible examples. 
Adversarial examples may introduce synthetic noise that does not align 
with real-world language patterns. LLM-based approaches also struggle 
to maintain contextual fidelity, avoid hallucinations, and manage biases 
(Hadi et al. , 2024). Generally, these existing methods are often “blind” 
as they fail to preserve critical features essential for models’ decision-
making.

These limitations highlight the need for our XAI-guided context-
aware data augmentation technique, which leverages explainability 
methods to identify and modify less critical features in the model’s pre-
dictions. We generate diverse data without altering critical features by 
focusing on non-essential features for augmentation-using synonym re-
placement, back-translation, or paraphrasing. This approach minimizes 
noise, avoids unnatural examples, and improves model generalization, 
effectively balancing data diversity and semantic integrity.

3.  Methodology

Fig. 1 provides a high-level overview of our XAI-guided context-
aware data augmentation methodology. The augmentation process 
starts by leveraging pre-trained multilingual transformer-based encoder 
models as the baseline model. To better understand the model’s decision-
making, XAI techniques are integrated to identify and highlight the less 
important features in the dataset. Once these less influential words are 
identified, the data augmentation process begins, involving multiple 
steps.

In the XAI Synonym Replacement with Back Translation (XAI-SR-
BT) approach, the less influential words identified by the XAI method 
are first translated into a high-resource language (English) using the 
Google Translate API. For each translated word, contextually appropri-
ate synonyms are retrieved using the WordNet lexical database via the 
NLTK interface (Bird et al., 2009; Fellbaum, 1998). These synonyms are 
then back-translated into the original language using the same transla-
tion API. Finally, the original less important words in the input text are 
replaced with the back-translated synonyms. This method introduces 
controlled lexical variation while preserving semantic equivalence.

In the XAI Paraphrasing Replacement with Back Translation (XAI-
PR-BT) approach, the translation process follows the same steps as in 
XAI-SR-BT. The fine-tuned version of the pre-trained PEGASUS model 
(tuner007/pegasus_paraphrase) is then applied to generate paraphrases 
for the translated less influential words (Zhang et al., 2020). However, 
other pre-trained models, such as GPT, can also be used for phrase 
generation. PEGASUS is better suited for this task because of its archi-
tecture. Unlike GPT, which is designed for next token prediction and
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Fig. 1. XAI-guided and controlled context-aware data augmentation frame-
work: An iterative XAI-guided feature identification data augmentation ap-
proach.

open-ended generation, PEGASUS is pre-trained with a gap-sentence 
generation objective, making it more effective in producing semantically 
consistent and contextually relevant phrases (Zhang et al., 2020). These 
paraphrased outputs are back-translated into the original language us-
ing the same translation API. Finally, the original less important words 
in the input text are replaced with the back-translated paraphrases. 
This technique enables more fluent and context-aware augmentation, 
thereby improving the model’s robustness and generalization across lin-
guistic variations.

The effectiveness of these augmentation strategies is evaluated by 
assessing the models’ performance metrics and the explanations pro-
vided by the XAI techniques. Our approach incorporates an iterative 
feedback refinement loop into the XAI-guided augmentation pipeline, 
as illustrated in Fig. 1, to ensure the effectiveness and quality of aug-
mentation. After performing the augmentation process, which is carried 
out through XAI-SR-BT and XAI-PR-BT, we dynamically verify whether 
the replacements for the selected less important words were successfully 
applied. If replacements are missing due to the unavailability of appro-
priate synonyms or paraphrases, the process loops back and dynamically 
adjusts the selection threshold for less important words identified by the 
XAI method (e.g., increasing the threshold from 20% to 30%).

Table 1 
An overview of hate speech and sentiment analysis dataset statistics for mul-
tiple languages used in this study, including dataset size, average sentence 
length, and data sources.
 Languages  Size  Average length  Data source
 Hate speech dataset
 Amharic  14,643  17.5 Ayele et al. (2023)
 Arabic  3353  13.6 Ousidhoum et al. (2019)
 Hindi  8192  25.6 Bhardwaj et al. (2020)
 Italian  8100  24.7 Bosco et al. (2018)
 Portuguese  3059  15.7 Fortuna et al. (2019)
 Spanish  6600  21.3 Basile et al. (2019)
 Sentiment analysis dataset
 Amharic (Ethiopia)  9480  19.7 Muhammad et al. (2023)
 Hausa (Nigeria)  22,153  18 Muhammad et al. (2023)
 Kinyarwanda (Rwanda)  5155  14.6 Muhammad et al. (2023)
 Swahili (Kenya)  3011  14 Muhammad et al. (2023)

Secondly, once the augmented data is generated, it is combined with 
the original dataset and used to retrain the model. The model is then 
evaluated using the accuracy and the F1 score metrics, along with ex-
planation insights to assess the quality and interpretability of the pre-
dictions. If the evaluation results indicate insufficient improvement, the 
process enters a refinement phase again. In this iterative loop stage, we 
adjust the translation API, the paraphrasing model, or the XAI technique. 
This iterative process continues until the model demonstrates meaning-
ful improvements. This flexibility is a key benefit of our methodology.

3.1.  Datasets

We utilized six hate speech datasets spanning multiple languages, 
ranging from high-resource Spanish to low-resource Amharic, includ-
ing Arabic, Hindi, Italian, and Portuguese. Additionally, to demon-
strate the reproducibility of our approach, we employed four senti-
ment analysis datasets in Amharic, Hausa, Kinyarwanda, and Swahili. 
These datasets are carefully selected to evaluate the effectiveness of XAI-
guided context-aware data augmentation techniques in high, medium, 
and low-resource languages. Each dataset differs in size, linguistic struc-
ture, and complexity, providing a robust and comprehensive benchmark 
for assessing the impact of our approach on model performance. This di-
versity enables us to investigate how well our proposed method general-
izes across languages and varying levels of resource availability. Table 1 
presents an overview of the characteristics and statistics of each dataset 
used in our experiments.

3.2.  Models

Our model selection strategy is driven by two primary objectives: 
optimizing the data augmentation process and thoroughly evaluating 
the impact of the augmented data on model performance. To guide 
the augmentation process, we selected XLM-Roberta (XLM-R) (Conneau 
et al., 2019) as our baseline model due to its proven robustness and
exceptional performance in cross-lingual tasks. We also considered other 
pre-trained multilingual models as they provide a strong foundation for 
language understanding and can significantly enhance performance in 
various language scenarios. We fine-tune these models on both the origi-
nal and augmented datasets to adapt them to specific downstream tasks. 
This allows us to evaluate the impact of data augmentation on task-
specific performance.

To evaluate the impact of our augmented data, we utilized XLM-R 
and mBERT (Pires et al., 2019), allowing for a comprehensive assess-
ment of the effectiveness of our augmentation strategies across different 
architectures and languages. This dual-model evaluation enabled us to 
systematically analyze improvements in generalization, accuracy, and 
robustness across diverse languages, offering more profound insights 
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into how the augmented data influences model performance in different 
language scenarios. By employing a multi-model evaluation approach, 
we validate our augmentation’s contribution to enhancing multilingual 
model performance and better understand the benefits of XAI-guided 
methodologies in different language settings.

3.3.  Selection of explainability techniques

The selection of the appropriate XAI method is crucial and must 
be based on factors such as the interpretability needs, model architec-
ture, and input data type (Yigezu et al., 2024). Several categories of XAI 
techniques provide distinct ways to interpret complex models, including 
perturbation-based methods like SHAP (Ribeiro et al., 2016), gradient-
based approaches such as Integrated Gradients (IG) (Sundararajan et al., 
2017), Layer-wise Relevance Propagation (Bach et al., 2015), and atten-
tion mechanism visualizations (Vaswani et al., 2017).

IG provides more accurate and interpretable word-level feature at-
tributions than perturbation-based approaches, such as SHAP and LIME 
(Zhuo and Ge, 2024). IG is ideal for text-based models because it cap-
tures the contextual influence of each word on the model’s predictions 
(Ansari et al., 2024). IG is well-suited for handling long sequential text 
inputs, as it leverages the full context of the input to compute attribution 
scores without the scalability limitations associated with perturbation-
based methods such as SHAP and LIME (Sundararajan et al., 2017). Un-
like SHAP and LIME, which rely on repeated input perturbations and ex-
tensive sampling to estimate feature importance (Bhattacharya, 2022), 
IG performs a single pass using gradient computations along a defined 
path from baseline to the actual input (Sundararajan et al., 2017). This 
makes IG significantly more computationally efficient and scalable for 
large-scale NLP tasks involving transformer-based models and long-form 
text data (Atanasova, 2024).

IG ensures that the selected features for augmentation have min-
imal impact on the model’s overall decision-making process. IG is 
less sensitive to noise than perturbation-based methods like SHAP and 
LIME (Sundararajan et al., 2017), which can produce inconsistent fea-
ture importance scores due to their reliance on random perturbations. 
Perturbation-based XAI methods are also computationally expensive 
and often struggle with longer text sequences, leading to scalability is-
sues and impractical for large-scale text data (Holzinger et al., 2022; 
Lundberg, 2017). Attention-based visualization techniques highlight 
words based on the attention weights assigned to each token by the 
model. However, these weights do not necessarily correlate with the 
true importance of features for the model’s final prediction, which makes 
them unreliable for guiding XAI-guided context-aware data augmenta-
tion (Serrano & Smith, 2019). For instance, sentiment-bearing words like 
“excellent” and “poor”are crucial for determining classification in a clas-
sification task. In contrast, structural words like “had” or “but” might 
receive higher attention scores due to their contextual role, even though 
they contribute minimally to the text classification. Relying solely on 
attention scores for feature selection could lead to the preservation of 
irrelevant words and result in suboptimal data augmentation strategies.

We further contextualize our selection of IG by referencing our prior 
study (Mersha et al., 2025), in which we systematically evaluated the 
effectiveness of various XAI techniques across encoder-based language 
models. Our findings demonstrated that gradient-based techniques out-
perform SHAP, LIME, and attention visualization methods in terms of 
scalability and robustness in both short- and long-text inputs, particu-
larly as the size of the model parameter increases (Mersha et al., 2025). 
In contrast, Integrated Gradients accurately quantify the contribution 
of each word, distinguishing between critical and non-essential features 
(Sundararajan et al., 2017). This capability allows us to modify or re-
place less important words while preserving the core meaning of the 
text. Thus, we determine that IG is the optimal choice for XAI-guided 
context-aware data augmentation due to its interpretability, computa-
tional efficiency, and ability to maintain the integrity of the augmented 
data (Ismail et al., 2021).

3.4.  XAI-guided data augmentation strategy

The augmentation process begins using pre-trained multilingual 
models as the baseline model. We apply feature-based XAI tech-
niques, such as Integrated Gradients, to explain the model’s decision-
making process and identify the features in the data that have minimal
impact on its predictions. Building on this, we proposed two XAI-guided 
context-aware data augmentation methods: XAI Synonym Replacement 
with Back Translation and Paraphrasing Replacement with Back Trans-
lation. These methods leverage explainability to selectively augment 
the data by targeting features that contribute the least to the model’s 
predictions. In both approaches, we employed the Integrated Gradi-
ents explainability technique to compute the importance score 𝐼(𝑓𝑖) for 
each feature (word) 𝑓𝑖 within our dataset 𝐷original. Integrated Gradi-
ents measure each feature’s contribution to the model’s prediction. To 
select the least important top-𝑘 features from a total of 𝐾 features in 
the input example, we assumed that each feature has an importance 
score 𝐼(𝑓𝑖), where 𝑓𝑖 is the 𝑖th feature, and 𝐼(𝑓𝑖) represents its im-
portance. The features were ranked in ascending order based on their 
importance scores, resulting in an ordered list 𝑓(1), 𝑓(2),… , 𝑓(𝐾), where 
𝐼(𝑓(1)) ≤ 𝐼(𝑓(2)) ≤ … ≤ 𝐼(𝑓(𝐾)). From this list, we selected the top-𝑘 least 
important features for targeted data augmentation, denoted as 𝑆𝑘 =
{𝑓(1), 𝑓(2),… , 𝑓(𝑘)}. The value of 𝑘 is determined by input length, with 
shorter texts having smaller 𝑘 values and longer texts having larger 𝑘
values.

In the XAI Synonym with Back Translation augmentation approach, 
we replaced synonyms through translation after identifying the least 
important words. For each word 𝑓𝑖 ∈ 𝑆𝑘, we translated it from the 
source language to English, represented as 𝑓trans = Translate(𝑓𝑖). We 
then replaced the translated word with its synonym, denoted as 𝑓syn =
Synonym(𝑓trans), and back-translated the synonym back to source lan-
guage as 𝑓bt = BackTranslate(𝑓syn). The original least important word 
𝑓𝑖 in each sample 𝑥 ∈ 𝐷original was replaced with its back-translated
synonym 𝑓bt.

We then generated augmented samples by replacing the least im-
portant words 𝑆𝑘 in each original sample 𝑥 with the back-translated 
synonyms, represented as 𝑥augmented = Augment(𝑥, 𝑆𝑘). The augmented 
samples were collected into an augmented dataset, 𝐷augmented.

In the final step, we combined the augmented dataset 𝐷augmented
with the original dataset 𝐷original to create the final dataset for fur-
ther training and evaluation. This combined dataset is represented as 
𝐷combined = 𝐷original ∪𝐷augmented.

The XAI Paraphrasing with Back Translation method follows 
a similar process to the synonym replacement approach, but uses
paraphrasing instead. After identifying the top-𝑘 least important 
features 𝑆𝑘 using Integrated Gradients, each word 𝑓𝑖 ∈ 𝑆𝑘 was first 
translated from the source language into English (𝑓trans = Translate(𝑓𝑖)). 
Instead of finding a synonym, we generated a paraphrase using pre-
trained models, such as GPT or PEGASUS (𝑓para = Paraphrase(𝑓trans)). 
The paraphrased word was then back-translated into the original source 
language, resulting in 𝑓bt = BackTranslate(𝑓para). Each original word 𝑓𝑖
was replaced with its back-translated paraphrased version 𝑓bt, creating 
an augmented sample 𝑥augmented = Augment(𝑥, 𝑆𝑘) for each original 
sample 𝑥 ∈ 𝐷original. As with the synonym replacement method, the 
augmented dataset 𝐷augmented can also combined with the original
dataset to form the final dataset 𝐷combined = 𝐷original ∪
𝐷augmented.

Through these approaches, we effectively generated augmented data 
that leverages XAI techniques to target the least important features 
(words). While any features can also be targeted, our approach fo-
cuses on the least important words, preserving essential ones to generate 
model-oriented augmented data. This ensures the core information is re-
tained while enhancing diversity and improving model robustness and 
performance. The model learns to be less sensitive to noise and irrele-
vant inputs by altering less critical features.
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Table 2 
Impact of XAI-guided synonym replacement and paraphrasing with back translation on XLM-R and mBERT models across 
different languages for the hate speech detection task. This table shows the improvements in Accuracy (Acc) and F1 score 
(F1) before and after augmentation, along with the corresponding delta values (ΔAcc and ΔF1).

 Before augmentation  XAI synonym with back translation  XAI paraphrasing with back translation
 Model  Dataset  Acc  F1  Acc  F1 ΔAcc ΔF1  Acc  F1 ΔAcc ΔF1

XLM-R

 Amharic  0.865  0.864  0.931  0.931  +0.066  +0.067  0.911  0.911  +0.046  +0.047
 Arabic  0.775  0.769  0.839  0.836  +0.064  +0.067  0.814  0.811  +0.039  +0.042
 Hindi  0.812  0.810  0.887  0.885  +0.075  +0.075  0.863  0.860  +0.051  +0.050
 Italian  0.689  0.678  0.749  0.748  +0.060  +0.070  0.733  0.733  +0.044  +0.055
 Portuguese  0.712  0.709  0.796  0.795  +0.084  +0.086  0.766  0.761  +0.054  +0.052
 Spanish  0.735  0.735  0.809  0.809  +0.074  +0.074  0.773  0.771  +0.038  +0.036

mBERT

 Amharic  0.870  0.872  0.925  0.925  +0.055  +0.053  0.913  0.912  +0.043  +0.040
 Arabic  0.779  0.766  0.824  0.823  +0.045  +0.057  0.814  0.812  +0.035  +0.046
 Hindi  0.845  0.834  0.897  0.892  +0.052  +0.058  0.881  0.880  +0.036  +0.046
 Italian  0.695  0.695  0.762  0.762  +0.067  +0.067  0.733  0.733  +0.038  +0.038
 Portuguese  0.675  0.669  0.744  0.742  +0.069  +0.073  0.721  0.711  +0.046  +0.042
 Spanish  0.765  0.765  0.827  0.822  +0.062  +0.057  0.803  0.795  +0.038  +0.030

Table 3 
Impact of XAI-guided synonym replacement and paraphrasing with back translation on XLM-R and mBERT models across 
four low-resource languages for the sentiment analysis task. The table shows the Accuracy (Acc) and F1 score (F1) before 
and after augmentation, along with the corresponding delta values (ΔAcc and ΔF1).

 Before augmentation  XAI synonym with back translation  XAI paraphrasing with back translation
 Model  Dataset  Acc  F1  Acc  F1 ΔAcc ΔF1  Acc  F1 ΔAcc ΔF1

XLM-R

 Amharic  0.803  0.801  0.884  0.883  0.081  0.082  0.863  0.854  0.060  0.053
 Hausa  0.827  0.825  0.907  0.896  0.080  0.071  0.875  0.874  0.048  0.049
 Kinyarwanda  0.706  0.700  0.764  0.761  0.058  0.061  0.749  0.741  0.043  0.041
 Swahili  0.648  0.626  0.687  0.679  0.039  0.053  0.671  0.663  0.023  0.037

mBERT

 Amharic  0.814  0.811  0.892  0.891  0.078  0.080  0.872  0.870  0.058  0.059
 Hausa  0.819  0.814  0.914  0.913  0.095  0.099  0.884  0.881  0.065  0.067
 Kinyarwanda  0.717  0.710  0.776  0.774  0.059  0.064  0.751  0.743  0.034  0.033
 Swahili  0.661  0.653  0.698  0.693  0.037  0.040  0.689  0.686  0.028  0.033

4.  Experimental results and discussion

We conducted two experiments to generate augmented data using 
XAI-guided context-aware data augmentation techniques with the XLM-
R model across six languages. The first experiment applied XAI-guided 
Synonym Replacement with Back Translation, while the second em-
ployed XAI-guided Paraphrasing with Back Translation.

We measured improvements in accuracy and F1 score using both 
XLM-R and mBERT models to evaluate the effectiveness of the XAI-
guided augmentation techniques. The results from both experiments, 
presented in Tables 2 and 3, demonstrate that models trained on XAI-
guided augmented data consistently outperformed models trained on 
non-augmented data. The XAI Synonym Replacement with Back Trans-
lation approach achieved the highest performance gains across all lan-
guages for both XLM-R and mBERT models, showing larger improve-
ments in accuracy and F1 score compared to the XAI Paraphrasing 
with Back Translation technique. The XAI Synonym Replacement with 
the Back Translation approach captures semantic variations more effec-
tively, leading to better generalization and stronger model performance. 
Although XAI Paraphrasing with Back Translation also produced posi-
tive results, its impact was generally smaller than XAI Synonym Replace-
ment with the Back Translation approach, which may not add sufficient 
diversity to the augmented data, as shown in Fig. 2.

These performance gains can be attributed to XAI-guided context-
aware data augmentations’ more informed and targeted nature. Unlike 
conventional methods that apply augmentations without accounting for 
feature (word) relevance for the decision-making process, which can 
introduce noise and distort the augmented data, our XAI-guided tech-
niques leverage explainability methods, such as integrated gradients, to 
focus on altering less significant words in the input text. This selective 
approach ensures that the most critical features (words) are preserved 

Fig. 2. Accuracy comparison of XLM-R and mBERT models across multiple lan-
guages on a hate speech dataset, before and after XAI-guided context-aware 
data augmentation, showcasing the impact of augmented data on model perfor-
mance.
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Table 4 
Performance comparison of conventional and XAI-guided context-aware data augmentation techniques on XLM-R and mBERT models across different 
languages for the hate speech detection task. The table presents the accuracy (Acc) and F1 score (F1), showing changes before and after applying 
different augmentation techniques.

Before aug-
mentation

Synonym re-
placement

Back transla-
tion

Contextual 
augmentation

Adversarial 
examples

XAI-SR-
BT (ours)

XAI-PR-
BT (ours)

 Model  Dataset  Acc  F1  Acc  F1  Acc  F1  Acc  F1  Acc  F1  Acc  F1  Acc  F1
 XLMR  Amharic  0.865  0.864  0.872  0.871 0.883  0.882  0.869  0.868  0.870  0.870  0.931  0.931  0.911  0.911

 Arabic  0.775  0.769  0.790  0.788 0.807  0.804  0.778  0.776  0.782  0.781  0.839  0.836  0.814  0.811
 Hindi  0.812  0.810  0.828  0.827 0.843  0.843  0.824  0.823  0.819  0.819  0.887  0.885  0.863  0.860
 Italian  0.689  0.678  0.697  0.693 0.716  0.713  0.692  0.691  0.701  0.700  0.749  0.748  0.733  0.733
 Portuguese  0.712  0.709  0.726  0.724 0.747  0.742  0.718  0.718  0.720  0.719  0.796  0.795  0.766  0.761
 Spanish  0.735  0.735  0.747  0.747 0.756  0.756  0.741  0.740  0.742  0.739  0.809  0.809  0.773  0.771

 mBERT  Amharic  0.870  0.872  0.887  0.880 0.894  0.890  0.877  0.870  0.868  0.861  0.925  0.925  0.913  0.912
 Arabic  0.779  0.766  0.792  0.789 0.798  0.797  0.789  0.776  0.782  0.778  0.824  0.823  0.814  0.812
 Hindi  0.845  0.834  0.867  0.859 0.871  0.871  0.855  0.851  0.850  0.847  0.897  0.892  0.881  0.880
 Italian  0.695  0.695  0.708  0.708 0.724  0.719  0.699  0.696  0.700  0.700  0.762  0.762  0.733  0.733
 Portuguese  0.675  0.669  0.686  0.683 0.694  0.694  0.679  0.672  0.680  0.677  0.744  0.742  0.721  0.711
 Spanish  0.765  0.765  0.774  0.774 0.786  0.780  0.768  0.758  0.770  0.761  0.827  0.822  0.803  0.795

Note: XAI-SR-BT refers to XAI Synonym Replacement with Back Translation, and XAI-PR-BT refers to Paraphrasing Replacement with Back Translation.
Table 5 
Performance comparison of conventional and XAI-guided context-aware data augmentation techniques on XLM-R and mBERT models across four low-
resource languages for the sentiment analysis task. The table presents the accuracy (Acc) and F1 score (F1), showing changes before and after applying 
different augmentation techniques.

Before aug-
mentation

Synonym re-
placement

Back transla-
tion

Contextual 
augmentation

Adversarial 
examples

XAI-SR-
BT (ours)

XAI-PR-
BT (ours)

 Model  Dataset  Acc  F1  Acc  F1  Acc  F1  Acc  F1  Acc  F1  Acc  F1  Acc  F1

XLM-R

 Amharic  0.803  0.801  0.834  0.830  0.843  0.842  0.819  0.814  0.828  0.811  0.884  0.883  0.863  0.854
 Hausa  0.827  0.825  0.847  0.844  0.851  0.850  0.837  0.836  0.844  0.844  0.907  0.896  0.875  0.874
 Kinyarwanda  0.706  0.700  0.728  0.724  0.737  0.737  0.710  0.710  0.716  0.715  0.764  0.761  0.749  0.741
 Swahili  0.648  0.626  0.651  0.650  0.660  0.660  0.647  0.643  0.659  0.658  0.687  0.679  0.671  0.663

mBERT

 Amharic  0.814  0.811  0.847  0.844  0.855  0.855  0.828  0.822  0.833  0.832  0.892  0.891  0.872  0.870
 Hausa  0.819  0.814  0.854  0.851  0.861  0.860  0.836  0.834  0.840  0.840  0.914  0.913  0.884  0.881
 Kinyarwanda  0.717  0.710  0.731  0.730  0.744  0.745  0.721  0.721  0.724  0.724  0.776  0.774  0.751  0.743
 Swahili  0.661  0.653  0.671  0.670  0.680  0.680  0.665  0.662  0.669  0.668  0.698  0.693  0.689  0.686

Note: XAI-SR-BT refers to XAI Synonym Replacement with Back Translation, and XAI-PR-BT refers to Paraphrasing Replacement with Back Translation.

while introducing controlled variability that enhances the model’s gen-
eralization ability.

We ensured that critical features remained consistent across datasets, 
which helped us maintain semantic integrity and prevent distortions 
that could undermine the model’s prediction. When discrepancies in fea-
ture importance were detected-such as shifts in the importance of crucial 
features-we adjusted the augmentation parameter, including the value 
of 𝑘 in the 𝑡𝑜𝑝 − 𝑘 least important feature selection parameter, to ensure 
that the process accurately targeted and preserved relevant features. To 
ensure meaningful augmentation while preserving semantic integrity, 
we limited 𝑘 to 30% of the total features or words in our experiment, 
selecting them from the least to the most important ranked words based 
on the input length of our dataset, as shown in Table 1. The value of 𝑘
was dynamically adjusted for each input text based on its length, with 
shorter inputs assigned a smaller 𝑘 and longer inputs assigned a larger 𝑘. 
Additionally, we can generate diverse augmented datasets to optimize 
performance by varying the value of 𝑘 and evaluating iteratively. The 
augmentations are driven by the model’s internal understanding of the 
input. As a result, XAI-guided context-aware data augmentation tech-
niques consistently improve accuracy and F1 scores across several lan-
guages, outperforming conventional augmentation methods that often 
yield limited improvements, as shown in Tables 4 and 5.

The performance differences in XAI-guided data augmentation be-
tween low-resource and high-resource languages can be attributed to 
linguistic characteristics and differences in corpus size. Multilingual 
models may tend to be biased toward high-resource languages due to 
factors such as syntactic regularity, lexical richness, and larger corpus 
sizes. These factors enable high-resource languages to benefit more from 
augmentation techniques, resulting in greater improvements in model 

performance. As shown in Tables 2 and 3, low-resource languages show 
lower gains in both accuracy and F1 scores. For instance, Swahili and 
Kinyarwanda achieved only 2.8% and 3.4% accuracy improvements, re-
spectively, on sentiment analysis tasks when using the XAI Paraphrasing 
with Back Translation (XAI-PR-BT) approach. In contrast, high-resource 
languages such as Hindi, supported by richer lexical resources and larger 
corpora, demonstrated significant improvements, for example, a 7.5% 
gain in accuracy on the hate speech task using the XAI Synonym Re-
placement with Back Translation (XAI-SR-BT) method.

These performance differences are further influenced by linguistic 
characteristics such as morphological complexity, syntactic variability, 
and limited corpus availability. Morphologically rich languages, such as 
many low-resource Indigenous Australian languages studied in Tosolini 
and Bowern (2025), often exhibit complex inflectional and derivational 
systems, which create challenges for data augmentation techniques de-
signed for high-resource languages with simpler morphology. Syntactic 
diversity, such as the order of free words in some languages, can dimin-
ish the effectiveness of text-based augmentation methods that assume 
more rigid syntactic structures (Li et al., 2022). Additionally, corpus 
size exacerbates these issues, as low-resource languages lack sufficient 
data to train robust models, rendering augmentation less effective com-
pared to high-resource languages, where abundant data ensures better 
generalization (Nzeyimana, 2024; Solyman et al., 2023).

4.1.  Comparison of XAI-guided and conventional data augmentation

Tables 4 and 5 compare XAI-guided context-aware data augmenta-
tion techniques with conventional methods in multiple languages us-
ing the XLM-R and mBERT models. In our study, we compare the
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effectiveness of our XAI-guided context-aware data augmentation ap-
proach with four conventional techniques, which serve as benchmarks 
to evaluate our proposed method. Back Translation involves translat-
ing the text into another language and then back into the original 
language to generate variations (Feldman & Coto-Solano, 2020). Ran-
dom Synonym Replacement with Back Translation substitutes words 
in the original text with synonyms using translation (Beddiar et al., 
2021). Contextual Augmentation employs pre-trained language mod-
els, such as mBERT and XLM-R, to replace words based on their con-
text (Kobayashi , 2018). Adversarial examples with back translation 
introduce small perturbations or noise into the text (Ebrahimi et al., 
2017). Across all datasets, as shown in Tables 2 and 3, both XAI-guided 
context-aware data augmentation methods—XAI Synonym Substitution 
with Back Translation and XAI Paraphrasing with Back Translation—
consistently outperform the baseline results before augmentation and 
all other convention augmentation methods. XAI Synonym Substitution 
with Back Translation provides more significant gains in most cases, 
showing more substantial improvements in accuracy and F1 score. This 
highlights the effectiveness of integrating explainability techniques into 
data augmentation to generate meaningful and diverse text variations 
that improve model performance across multiple datasets.

Our XAI-guided context-aware data augmentation techniques, such 
as XAI Synonym Replacement with Back Translation and XAI Paraphras-
ing with Back Translation, show a clear performance advantage over 
conventional augmentation methods, including Synonym Replacement, 
Back Translation, Contextual Augmentation, and Adversarial Examples, 
as shown in Tables 4 and 5.

Appendix A.3 illustrates examples of augmented data in Spanish and 
Amharic languages, along with their English translations, by using a 
synonym replacement with a back-translation approach.

4.2.  Evaluation

We utilized two complementary evaluation approaches to determine 
the effectiveness of our proposed XAI-guided context-aware data aug-
mentation method: model-based and XAI-based evaluation. The model-
based approach involves assessing the overall model performance gains 
before and after augmentation. The XAI-based approach uses XAI tech-
niques to evaluate changes in feature importance and interpretability 
before and after augmentation.

For the model-based evaluation, we employed XLM-R and mBERT 
as evaluation models to analyze the performance of both the original 
and the augmented datasets. By comparing the accuracy and F1-score 
metrics, we measured the impact of augmented data on model perfor-
mance. This enabled us to quantify the gains achieved through augmen-
tation regarding generalization and robustness across different language 
scenarios, as shown in Tables 2 and 3.

The XAI-based evaluation leveraged feature attribution methods 
to better understand model behavior on the original and augmented 
datasets. We applied the Integrated gradient XAI technique to determine 
whether critical features identified in the original data were preserved 
in the augmented versions. By comparing feature importance scores and 
XAI explanations before and after augmentation, we assessed the impact 
of our augmentation strategies on model interpretability.

Our approach is not static but rather an ongoing process of refine-
ment. This iterative feedback loop of model performance evaluation and 
XAI-based insights allows us to refine the augmentation process contin-
uously. By doing so, we optimize model accuracy and robustness and 
enhance interpretability, ensuring that our augmented data effectively 
supports the model prediction performance and explainability goals.

5.  Limitations and future direction
Despite the strong performance gains demonstrated by our XAI-

guided context-aware data augmentation approach, some limitations 

remain. The method depends on the selected explainability technique. 
This may introduce computational overhead due to the integration of 
XAI methods into the baseline model. Moreover, the reliability of cur-
rent XAI explanations can be inconsistent, and the quality of augmen-
tation may vary depending on the chosen XAI method and translation 
tool. In future work, we plan to investigate more efficient and stable XAI 
techniques and extend our evaluation across a broader range of model 
architectures (language-specific models like AfriBERTa and AraBERT), 
languages, and tasks to analyze performance improvements. We also in-
tend to explore the implications of our approach for multilingual fairness 
and adversarial robustness.

6.  Conclusion

Our study introduces a novel XAI-guided context-aware data aug-
mentation approach that effectively addresses the limitations of con-
ventional data augmentation methods, particularly by improving the 
performance of language models in different languages. The proposed 
approach ensures that critical semantic information is preserved during 
augmentation by integrating XAI techniques with multilingual models 
to identify less model-influential features in the input text. This targeted 
strategy results in high-quality augmented data, significantly enhancing 
various language models’ robustness, performance, and explainability, 
offering a promising future, particularly for low-resource language pro-
cessing. We demonstrate that XAI-guided context-aware data augmenta-
tion enhances the generalization of language models and provides trans-
parency into the augmentation process. Through iterative refinement us-
ing feedback loops between XAI and applied models, the approach main-
tains contextual integrity, making it particularly suitable for addressing 
the diverse challenges of several languages. Our experimental results 
confirm that the XAI-guided context-aware data augmentation approach 
consistently outperforms existing or conventional augmentation meth-
ods, achieving higher accuracy and F1 scores across multiple language 
datasets. By integrating explainability techniques and language mod-
els into the data augmentation, we bridge the gap between enhancing 
model performance and maintaining interpretability. Our study sets the 
stage for the broader application of XAI in enhancing various language 
models in different languages.
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Appendix A.  Sample augmented data A.3

Fig. A.3. Sample Spanish and Amharic augmented data with translations from the Hate Speech dataset using the Synonym Replacement with Back Translation 
Approach. These samples include representative hate speech examples, which may contain offensive language, solely for research and analysis in the context of hate 
speech detection and data augmentation.
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